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Percolation on Infinitely Ramified Fractals 

S. Havlin, l'2 D. Ben-Avraham, 3 and D.  Movshovitz  3 

We present a family of exact fractals with a wide range of fractal and fracton 
dimensionalities. This includes the case of the fracton dimensionality of 2, 
which is critical for diffusion. This is achieved by adjusting the scaling factor as 
well as an internal geometrical parameter of the fractal. These fractals include 
the cases of finite and infinite ramification characterized by a ramification 
exponent p~ The infinite ramification makes the problem of percolation on these 
lattices a nontrivial one. We give numerical evidence for a percolation transition 
on these fractals. This transition is tudied by a real-space renormalization group 
technique on lattices with fractal dimensionaiity d between 1 and 2. The critical 
exponents for percolation depend strongly on the geometry of the fractals. 

KEY WORDS: Percolation; fractals; ramification phase transition; renor- 
realization. 

1. INTRODUCTION 

Recently, there has been an increasing interest in exact mathematical 
fractals (1'2) and in phase transitions on fractal lattices.(Z-4) The advantage of 
pure mathematical fractals is that one can generally calculate exactly the 
different critical exponents that characterize their various properties. This is 
important in view of the wide variety of physical systems which fractals 
seem to model. (1'2) Of particular interest is the question of the density o f  
states of fractals (5-7) and its related exponent, the fracton dimensionality d. 

In spite of the interest in phase transitions on fractal lattices, 
percolation, which is considered the most fundamental example of a 
transition, (8) has not yet been studied on fractals, probably because most of 
the research on phase transitions has been performed on Sierpinski gasketlike 
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fractals which are finitely ramified. On these fractals, percolation takes place 
only in the uninteresting limit Pc = 1. 

In this paper, we present a method to construct fractal lattices with any 
desired fractal and fracton dimensionality. These fractals have an infinite 
ramification whose critical exponent p will be shown to satisfy a particular 
inequality. Since ramification is infinite, the percolation problem in these 
fractals is a nontrivial one and Pc < 1. 

The fact that J can be adjusted is of interest because of its relation to 
the anomalous diffusion on fractal lattices and to their conductivity. ~s'9-13) 
Particularly, d = 2 is a critical dimension for anomalous diffusion in analogy 
with d = 2 for ordinary diffusion in homogeneous space. However, no fractal 
with d = 2  has yet appeared in the literature. C13) We present numerical 
evidence for a percolation transition on the fractal lattices discussed above. 
The percolation problem is analyzed by the real-space renormalization group 
(RSRG) technique of Reynolds et  al. (14) for fractals with fractal dimen- 
sionality d ranging from 1 to 2, thus providing a physical meaning to the 
analytic continuation of the percolation to 1 + ~ dimensions. 

2. THE FRACTAL FAMILY 

We define a family of exact fractals as follows. One starts with a d- 
dimensional hypercube which is subdivided to b d smaller hypercubes. For 
d = 2 the first stage of the fractal is a regular cartesian grid of (b - bx )  rows 
of b connected squares and bx rows each containing (b - b x )  squares. Each 
square belonging to the fractal is further diluted as in the first stage, and this 
procedure is continued indefinitely. In Fig. 1 we show an example of such a 
fractal embedded in a square with b = 5 and x = 3/5. Two stages of the 
procedure described above are shown. The figure is intended to show what 

x=315 

Fig. 1. Example of a fractal embedded in a square 
lattice with b = 5 and x = 3/5. Two iterations of the 
fractal are shown. 
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we mean by "a regular Cartesian grid...." Similarly for d = 3 the first stage 
of the fractal is a regular Cartesian grid built of ( b -  bx )  planes of cubes 
arranged as in the first stage of the fractal for d = 2, which are connected by 
the remaining bx  planes each consisting of ( b - b x )  2 cubes. So for d 
dimensions the first stage of the fractal consists of b - bx  hyperplanes which 
are just built as the first stage of the d -  1 fractal and these planes are 
connected by bx  hyperplanes each consisting of ( b - b x )  a-1 hypercubes. 
Thus, the fractal dimensionality d is generally given by 

b a = bx(b  - b x )  d - 1  + (b - b x ) b  a-1 (1) 

where b r =  b by definition. This recursion can be solved to yield 

ba = bd fa(x)  = bd -e / .  

f d ( x )  = (1 -- x )a- l [1  + (d - 1)x] = b-~/~ 
(2) 

This relation for d can also be derived by counting the d + 1 hypercubes 
which belong to each of the [b(1 - -x)]  u "junctions" in the fractal, and then 
adding the [ b ( 1 - x ) ]  a-1 hypercubes for d of the remaining surface hyper- 
planes which were not counted. This shows that the fractals we defined are 
isotropic and do not have a preferred axis, as one might conclude from their 
description above. 

In order to derive the conductivity exponent/a/v, define the exponent 
by r(ba)  = brr(a)  and the relation/a/v = d - 2 + ~9) We cannot calculate the 
recursion formula for ~ exactly but in the following we shall present two 
different recursion formulae which give (1 and (2 such that ffl ~ ~ ~ ~2, and 
we shall discuss a limit for which el ~ (z. We first present the arguments for 
d =  2. The whole fractal has a resistance r(a).  Upon magnification by b, 
each of the b 2 --  (bx)  2 squares comprising the fractal has the same original 
resistance r(a).  The resistance of the whole fractal is now r(ba).  

Imagine, for example, that one measures conductivity of a fractal 
between two lines as in Fig. 2. In the first approach, one ignores the internal 

Fig. 2. Calculation of the conductivity. A 
voltage is applied between the two lines a and b. 
The arrows point to the rows contributing to the 
first term in Eq. (2). 
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structure of the squares in the succeeding stages and considers them as being 
"full" and not further diluted. Clearly this underestimates the real resistance 
r(ba), since the different squares are assumed to match all along their boun- 
daries, which is not in fact correct. By this assumption, 

b C~ xb  b - xb  x 
- - - - + - - - - - - + l - - x ,  d = 2  (3) 

b - xb  b 1 - x 

The first term represents the contribution of ( b - x b )  parallel square 
resistance lying on xb  different rows. These rows are marked with arrows in 
the example of Fig. 2. The second term represents the resistance of the 
remaining (b - xb )  rows which are in practice resistances with an area of b. 

In the second approach, we nglect all the horizontal currents that might 
develop and thus only the contribution of ( b -  bx)  parallel chains of 
resistance bp(a) contribute to p(ba).  Then, 

b~ b 1 d = 2 (4) 
b - xb  1 - x '  

This time we obviously overestimate the total resistance. Therefore, it follows 
that 

This result is confirmed for the fractals in Fig. 1 and Fig. 4a by an exact 
enumeration of ranaom walks diffusing on it. For the anomalous diffusion 
exponent of the ffactal in Fig. 1, we find D =  2.21 + 0.02, so that ( =  
D - d =  0.49 + 0.02, which is within the range (5~_, 52) = (0.330, 1). For the 
fractal in Fig. 4a we find D = 2.08 + 0.01 so that ~ =  0.19 + 0.01, within the 
range (~,, ~2)= (0.14, 0.369). Note that in both cases ~ is notably closer to 

| .  

The above arguments can easily be extended for d > 2. One has 

b~ 1 _ xb  b - xb  
( b _ x b )  d-1 § b a -  1 

or (6) 

x 1 - - x  =bU~/v, d > 2  
bd-2+~-I - -  ( 1 - - X )  d-1 -[-~d)l("X) 

The first term represents the contribution of (b - - x b )  d-  1 parallel resistances 
lying on xb  hyperplanes of dimension d -  1. The second term takes into 
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account the remaining b - x b  hyperplanes whose resistance is inversely 
proportional to their area b d-~.  The generalization of the second approach is 

bZ 2 = b 
(b - xb )  d-  1 

or (7) 

The fracton 
above (5) by 

bd_ 2 +'~2 1 
(1 - - x )  a-1 - bUa/v 

dimensionality d is related to the exponents discussed 

J = 2 d i D  

where D is the anomalous diffusion exponent(l~ 

(8) 

D = 2 + ~u/v - f l /v = d + (9) 

Thus, in fact, b and x determine d and c7 of the_fractal. In Table I, we present 
some numerical values for the exponents d, d, and ~ obtained for several 

Table I. Dependence of the Exponents on b and x for d = 3. a 

x b d ~ C p 

0.5 2 2.00 1.66 0.42 0 
1.33 1.00 

5 2.57 2.36 --0.39 1.14 
2.11 - 0 . t 4  

0.8 

0.99 

0.999 

5 1.59 1.29 0.88 0 
1.23 1.00 

20 2.24 1.99 0.01 0.93 
1.94 0.07 

50 2.42 2.21 -0 .23  1.18 
2.16 -0 .18  

102 1.24 1.11 1.00 0 
104 2,12 2,00 0 1 
106 2.41 2.32 --0,33 1.33 

10 t 1.16 1.07 1.00 0 
106 2.08 2.00 0 1 
109 2.39 2.32 --0.33 1.33 

Whenever there is a difference, the upper values refer to (~ and the lower values refer to (2. 
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values of b and x for d = 3. For the exponents d and ~, the table gives two 
limiting values ((1 and ~2) from Eqs. (6) and (7). However, for x = 1 - e ,  
these two values coincide with O(e) and then only one value is displayed in 
Table I. It is clearly seen that a wide range of values of d and d can be 
achieved. This includes the cases of d greater than, equal to, or smaller than 
2. Moreover, it is seen from the table that more flexibility for d and d is 
achieved in the limit of x = 1 - e with e ~ 1, for which one knows the exact 
solution to O(e). As a matter of fact, 

2 ln[bafa(x)] + O(~) (10) 
J = ln[bZ(1 - X) ' -a fd(X)]  

3. RAMIFICATION 

We find it useful to use a definition of the ramification exponent as 
follows. <3) Suppose one can isolate a part of the fractal of linear size R by 
"cutting" it at the minimal number of places, Nmin(R ). Then as a conse- 
quence of self-similarity 

N m i n ( R ) ~ R  ~ (11) 

The exponent p ranges between 0 for finitely ramified fractals (e.g., the 
Sierpinski gasket) to p = d - 1 for homogeneous space. Moreover, let a given 
fractal have a fractal dimensionality a7 and a resistivity exponent ~ Then in 
each section of the fractal of linear size R there are at least R fractal threads 
crossing it each being at most R~/R  a long. Thus 

R~ ~ R  if-2~ o r  { <~ d - -  2p (12) 

But, since the anomalous diffusion exponent on any fractal satisfies D = 
( + d ~ >  2, then (~> 2 - d  and Eq. (12) provides a better bound than the 
trivial one p ~ d -  1 ~ d - 1. Note that p is defined by the minimal number 
of cuts one has to make in order to isolate a part of the fractal. If  one 
replaces the requirement of the number of cuts being minimal by, let us say, 
the mean number of cuts needed, then one should get an averaged exponent 
Pay such that 

j~ 'RPavdR : L'av+l = L  ~ 

or (13) 

p a v z d  m 1 
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Then, clearly, p ~< Pay and we must be cautions about minimizing Nmin(R ). In 
fact, we could find p ' >  Pay by making a number of  cuts N ' ( R )  which 
increases with R faster than R ~ As an example, the fractal in Fig. 1 has 
p = In 2/ln 5 ~ 0.43, Pay = d - -  1 ~ 0.72, and by cutting its central region on 
a continuous line lying on the shaded area we have p '  = 1. We present the 
results for p on some exact fractals in Table I. For  homogeneous space, 
p = P a v = d  - i, whereas for all of  the connected fractals (exact and 
statistical) that we have checked, we find the inequality: 

0~<p < p , v  = d  - ] (14) 

4.  E V I D E N C E  FOR P E R C O L A T I O N  O N  F R A C T A L S  

We expect percolation to take place at Pc < 1 whenever p > 0. The 
fractal displayed in Fig. 1 has p = In 2/in 5 so that nontrivial percolation 
may be expected. We carried out Monte Carlo simulations of  site percolation 
on these fractal lattices built up to two, three, and four iterations. On each of  
these exact fractal lattices we grew clusters by the cluster growth method, (15) 
that is, a site near the center of  the fractal was chosen as an origin and each 
around it belonging to the fractal were designated as being occupied with 
probability p or not with probability ! - p .  The cluster growth was 
continued from the new cluster sites in a similar way till it either terminated 
or reached all the edges of  the fractal. In Fig. 3 we show for each of  the 

/ i I I I I I - - I  I I - -  [ 

L 1.0 

0.8 * t 

0 , 6 .  

0.4 a ~ 

0,0 ~ ~- ~- 
0.8 Q9 1.o 

P 
Fig. 3. Fraction of clusters reaching the edges of the lattice (white symbols) and of those 
which terminate before (black symbols), as a function of the concentration p for different 
lattice sizes: (a) 25 X 25, square symbols; (b) 125 • 125, diamond; (c) 625 X 625, circles. 

822/36/5-6-22 
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fractal lattices described above (25 • 25, 125 • 125, and 625 • 625) the 
fraction of clusters reaching all the edges as well as the fraction of those 
which terminate before reaching any of the edges, as a function of the 
concentration p. The sum of the two fractions is not expected to be unity 
since there are percolation clusters which reach only part of the edges. The 
two curves intersect at points a, b, and c as shown in the figure. A sharper 
transition takes place as the lattice size increases. From the data for the 
largest lattice p c = 0 . 9 1 4  • 0.010. Also extrapolation of the intersection 
points a, b, and c yields a percolation threshold Pc ~ 0.92. We apply to this 
problem a RSRG approach of Reynolds et al. (~4) A renormal i zed frac ta l  cell 
is said to be occupied with probability p '  if there exist a percolating cluster 
from the lower edge of the fractal to its upper one. Thus, 

p ,  = p~2 + 12p1~(1 _ p) + 5 lpl~ -- p)2 + 96p9(1 _ p)3 q_ 96p8(1 _ p)4 

+ 46p7(1 _ p) ,  + 14p6(1 _ p)6 -b 2p'(1 -- p)7 (15) 

which has the trivial fixed points p *  = O, 1 but also the nontrivial one Pc ~- 
0.9221 in good agreement with the numerical data. 

5. PERCOLATION IN THE RSRG APPROACH 

In order to investigate percolation as a function of the exponents d and 
of the exact fractal lattice we present the following fractal family. The first 
iteration of each member of the family is based on a ring embedded in a 
square of b • b sites. In Figs. 4a, 4b, and 4c we show the first iteration of the 
cases of b = 2, 3, and 4, respectively. Note that the case of b = 2 is just an 
homogeneous square lattice. The fractal dimensionality of a member of size 
b is 

d =  ln[4(b - 1)]/ln b (16) 

E 

(a) (b) (c) (d) 
Fig. 4. (a), (b), and (c) are members of the fractal family (for b = 2, 3, and 4, respectively) 
studied by RSRG. In each case only the first iteration is shown. 
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and p is 

p = In 2/ln b (17) 

Thus, if we vary b, a7 ranges between 1 and 2 and p between 0 and 1. If one 
applies the same RSRG technique as before one obtains the general 
recursion formula 

p,  = 2pb _ p2b (18) 

from which the percolation threshold Pc can be calculated. The correlation- 
length exponent is 

v = In b/ln[Zb(1 - p~-l ) ]  (19) 

The calculation of the exponent fl is carried out by the ghost-site method (the 
ghost site is attached to each site on the cluster with a probability h). The 
bond between the ghost site and an occupied cell renormalizes to h'p '  if 
there is a percolating path connecting the lower edge of the cell and the ghost 
site. Thus one gets for b = 2 (homogeneous space) 

h'p '  = p4h 4 + 4p3(1 - p)h3L2p2(1 - p)Zh 2 (20) 

for b = 3  

h 'p '  = pSh 8 + 8p7(1 - p ) h ~  + p6(1 - p)Z(14h6 + 3h 5 + 2h3) 

+ pS(1 - p)3(a0h5 + 7h4 + 2h3) + p4(1 - p)4(6h4 + 4h3) 

+ 2p3(1 - p ) S h  3 (21) 

and for b = M > > l  

h'p '  = p4M-4h4M_ 4 q- (4M--  4)p4M-5(1 -- p)h4M_ s + . . .  (22) 

where h t = 1 -  ( 1 -  h) t. In Eq. (22) the missing terms make a negligible 
contribution. The exponent fl is extracted by linearizing these equations at 
the critical point pc [obtained from Eq. (18) and h c = 0]. Then ah'/c~htpc,hc = 
d - f l / v  so that using Eq. (4) and the value of v found from Eq. (19) one is 
able to calculate ft. Results for several values of b as well as for the limit b = 
M >> 1 are displayed in Table II. According to this table Pc increases as d 
and p decrease toward the result obtained in one-dimensional space. The 
change of p and d also have a dramatic effect on the exponents v and fl of the 
percolation. 

An important result of this work is the presentation of a physical model 
to the problem of the dimensionality d approaching to unity from 
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Table II. Characteristic Exponents of the Fractal Lattices and the 
Critical Exponents of Percolation on These Lattices 

Fractal Percolation 

b d p p~ v ,8 

2 2 1 0.6 1.63 0.63 
3 1,89 0.63 0.85 2.13 0.27 
4 1.79 0.5 0.92 2.43 
5 1.72 0.43 0.95 2.69 

10 1.56 0.30 0.989 4.60 
100 1.30 O. 15 0.9999 6.79 

In 4 In 2 1 In M In M 
M>>I 1 + - -  l - - - -  

lnM lnM M z In 2 �9 M 21n 2 

above. (a6'17) Table II implies that for d-~ 1(34>> 1) the critical exponents 
are v ~ 2 / ( d -  1), fl ~ ( 2 / ( d -  1)).  exp ( -4  In 2 / ( d -  1)) and Pc 
1 - e x p [ - 4  In 2 / ( d -  1(]. It is interesting to note that these results have the 
same dependence on d - 1  as those obtained by renormalization group 
technique. The constants, however, are different because of the specific 
geometric structure of the fractal family used. 

6. .  S U M M A R Y  A N D  D I S C U S S I O N  

We have presented a method for obtaining exact fractal lattices with 
any desired fractal dimensionality d and a fracton dimensionality a~ to any 
degree of accuracy. We defined an exponent p which characterizes 
ramification and derived an inequality for it related to the resistivity 
exponent ~ The question of whether or not p is derivable from other critical 
exponents remains open. We have shown that a percolation transition takes 

'place on exact fractal lattices with infinite ramification. The critical 
exponents of this percolation were estimated by a RSRG approach and 
found to have the same dependence on d -  1 = e for d close to 1 as the one 
predicted for d = 1 + e by other renormalization techniques (which do not 
refer to fractals). Thus, the present work provides a possible physical 
meaning for the analytic continuation of the percolation problem to 
d = l + e .  

Finally, we note that an interesting situation arises for fractals with a 
= 

fraction dimensionality d s ranging above and below=4/3 because a conjecture 
by Alexander and Orbach. (5) It is reasonable that d I of t h e f r a c t a l  should be 
bigger or equal to a~p of the percolat ion  cluster resulting on it. Than for c~ s 
higher than 4/3 one expects the conjecture for percolation that a~p = 4/3 to 
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hold. It would be interesting to have this conjecture checked for percolation 
on fractal lattices. Also the question of what happens for dj less than 4/3 is 

still unanswered. What would be the required value of Jp? There is still 
much numerical and theoretical work to be done on this intriguing subject. 
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